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1. Data pre-processing

Mean subtraction (e.g. AlexNet: 32× 32× 3, VGG: 1× 1× 3)

Mean subtraction and division by standard deviation per channel (e.g.
ResNet)
PCA or whitening are not common
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2. Weight Initialization

What if all the parameters are
initialized to zero?

Or, a different constant?
Leads to a failure mode (often
known as the ‘symmetry’
problem)
Hence, we need different
values as weights!
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2. Weight Initialization

Is it good enough to have
different parameters?

Large weights → exploding
gradients
Small ones → vanishing
gradients
Different weights → different
o/p range of the neurons
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2. Weight Initialization

How about randomly initializing?
W = 0.001 * np.random.randn(dl, dl−1)

Okay for the shallow nets
However, the dynamic range of the activations at later layers goes on
shrinking → activations tend to zero at deeper layers (e.g. 6 layer
MLP with a tanh nonlinearity)

All zero gradients, no learning!

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization

W = np.random.randn(dl, dl−1)/np.sqrt(dl−1)

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization

We prefer the o/p to have similar variance as the input

Consider a single layer, y = Wx, i.e. yi =
∑dl−1
j=1 xj · wj

var(yi) = dl−1 · var(xi · wi) (Assuming wi and xi are i.i.d)

var(yi) = dl−1 ·
(
E(xi2) · E(wi2)− E(xi)2 · E(wi)2

)
(Assuming x

and w are independent)
var(yi) = dl−1· var(xi)· var(wi) Assuming (xi and wi are zero-mean)
→ var(wi) = 1

dl−1
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2b. Weight Initialization with ReLU activations

Kaiming He or MSRA initialization

std=sqrt(2/dl−1)

Figure credits: Dr Justin Johnson
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2c. Weight Initialization: Residual Networks

MSRA initialization:
Var(F(x)+x) > Var(x)

Variance grows!
Solution: Initialize the first
Conv layer with MSRA, and
the second one with zero →
Var(x+F(x)) = Var(x)

Figure credits: Dr. Justin Johnson
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3. Deep Regularization

1 Most of the regularization techniques trade increased bias for
decreased variance

2 It has to be profitable!
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3. Deep Regularization

1 Most often the best-fitting model is a large model that has been
appropriately regularized
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3. Deep Regularization

Parameter Norm penalties (l2, l1, etc.)
Dataset Augmentation
Noise Robustness
Semi-Supervised Learning
Multi-Task Learning (Parameter sharing)
Sparse Representation
Dropout
etc.
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3a. Parameter Norm Penalties

1 For neural networks, typically only the weights of the affine
transformations are regularized leaving the biases unregularized

2 Bias controls only a single variable as opposed to weight which
connects two

3 Regularizing biases may induce underfitting
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3a. Parameter Norm Penalties

1 L2 parameter regularization: J̃ = α
2w

Tw + J (w;X, y)

2 L1 regularization: J̃ = α|w|1 + J (w;X, y)
3 Norm penalties induce different desired behaviors based on the exact

penalty imposed
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3b. Dataset Augmentation

1 Bestway to make ML model generalize better is to train with more
data

2 In practice training data is limited
3 Create fake data and add it to the training data, called Dataset

augmentation
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3b. Dataset Augmentation

1 Easier for classification

2 Difficult for density estimation task (unless we have solved the
estimation problem)
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3b. Dataset Augmentation

1 Has been particularly effective for specific classification problems such
as object recognition

2 Operations such as translation by few pixels, rotating slightly, adding
mild noise, etc. greatly improve generalization

3 Hand-designed augmentations in some domains can result in dramatic
improvements

4 Should restrict to label preserving transformations
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3c. Multi-Task Learning

1 Improves generalization by collecting samples arising out of multiple
taks

2 Similar to additional data samples, multi-task samples also put more
pressure on the parameters of the shared layers to be ‘better’
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3d. Dropout

1 Key ideas and contributions in DL have been to engineer architectures
for making them easier to train

2 Dropout is one such (‘deep’) regularization technique (Srivastava et
al. 2014)
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3d. Dropout
1 During the forward pass, some of the units are randomly ‘zeroed’ out

(neurons are removed)

2 Dropped units are randomly selected in each layer independent of
others

3 Resulting network has a different architecture
4 Backpropagation happens through the remaining activations

Figure from Srivastava et al. 2014
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3d. Dropout: Interpretation

1 Improves independence between the units (prevents co-adaptation of
the units in the network)

2 Distributes the representation among all the units (forces the network
to learn redundancy)
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3d. Dropout

1 We will decide on which units/layers to use dropout, and with what
probability p units are dropped.

2 For each sample, as many Bernoulli variables as units are sampled
independently for dropping the units.
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3d. Dropout: Another Interpretation

1 Results in a large ensemble of networks (with shared parameters)

2 Every possible binary mask results in a member of the ensemble
3 E.g. a dense layer with 10 units has 210 masks!
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3d. Dropout: test time

1 Which model from the ensemble to use?
y = f(x,w,m) (m is the chosen binary mask)

2 How about taking the opinion of all the experts? → ‘average out’ and
make the o/p deterministic

3 y = Em[f(x,w,m)] =
∑
m p(m) · f(x,w,m)

4 Leads to dropping no unit but multiply the activations with the
probability of retaining

5 The standard variant uses the ‘inverted dropout’. Multiplies
activations by 1

(1−p) during train and keeps the network untouched
during test.
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3d. Dropout

1 Which layers to regularize with the Dropout?

2 More parameters are the dense layers → usually applied there
3 Not much used after ResNets!
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3e. Batch Normalization (BN)

1 Gradient Descent converges faster with feature scaling
(
x← x−µ

σ

)

2 Batch Normalization (BN) is a normalization method for intermediate
layers of NNs → performs whitening to the intermediate layer
activations
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3e. Batch Normalization (BN)

γ and β are learn-able parameters
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3e. Batch Normalization (BN)

1 Originally introduced to handle the internal covariate shift (ICS)

2 BN makes the activation of each neuron to be Gaussian distributed
3 ICS is undesirable because the layers need to adapt to the new

distribution of activations
4 With BN, it is reduced to new pair of parameters, but the distribution

remains Gaussian
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3e. Batch Normalization (BN)

1 Mitigates interdependency between hidden layers during training

2 ∂(a) = ∂(b) · ∂(c) · ∂(d) · ∂(e)
3 if we want to adjust the input distribution of a specific hidden unit,

we need to consider the whole sequence of layers (w/o BN)
4 BN acts like a valve which holds back the flow, and allows its

regulation using β and γ
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4 BN acts like a valve which holds back the flow, and allows its
regulation using β and γ

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 30



3e. Batch Normalization (BN)

1 Mitigates interdependency between hidden layers during training

2 ∂(a) = ∂(b) · ∂(c) · ∂(d) · ∂(e)
3 if we want to adjust the input distribution of a specific hidden unit,

we need to consider the whole sequence of layers (w/o BN)
4 BN acts like a valve which holds back the flow, and allows its

regulation using β and γ

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 30



3e. Batch Normalization (BN)

1 Reduces training time (less ICS)

2 Reduces the demand for additional regularizers (Batch statistics)
3 Allows higher learning rates (less danger of vanishing/exploding

gradients)
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Regularization: General idea

1 Add some randomness during the training

2 Have a mechanism for marginalizing while testing
3 Some of the instances

Dropout
Batch Normalization
Data Augmentation
Drop Connect (drop weights instead)
Fractioinal MaxPooling
Stochastic Depth
Mixup
Cutout
CutMix, etc.
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