

Deep Learning

10 DNN Training - 1

[Dr. Konda Reddy Mopuri](https://krmopuri.github.io/) Dept. of AI, IIT Hyderabad Jan-May 2023

1. Data pre-processing

• Mean subtraction (e.g. AlexNet: $32 \times 32 \times 3$, VGG: $1 \times 1 \times 3$)

1. Data pre-processing

- Mean subtraction (e.g. AlexNet: $32 \times 32 \times 3$, VGG: $1 \times 1 \times 3$)
- Mean subtraction and division by standard deviation per channel (e.g. ResNet)

1. Data pre-processing

- Mean subtraction (e.g. AlexNet: $32 \times 32 \times 3$, VGG: $1 \times 1 \times 3$)
- Mean subtraction and division by standard deviation per channel (e.g. ResNet)
- PCA or whitening are not common

What if all the parameters are initialized to zero?

- What if all the parameters are initialized to zero?
- Or, a different constant?

i/p layer

- What if all the parameters are initialized to zero?
- Or, a different constant?
- Leads to a failure mode (often known as the 'symmetry' problem)

- What if all the parameters are initialized to zero?
- Or, a different constant?
- Leads to a failure mode (often known as the 'symmetry' problem)
- Hence, we need different values as weights!

o Is it good enough to have different parameters?

- o Is it good enough to have different parameters?
- \circ Large weights \rightarrow exploding gradients

- o Is it good enough to have different parameters?
- \circ Large weights \rightarrow exploding gradients
- \circ Small ones \rightarrow vanishing gradients

- o Is it good enough to have different parameters?
- \circ Large weights \rightarrow exploding gradients
- \circ Small ones \rightarrow vanishing gradients
- \circ Different weights \rightarrow different o/p range of the neurons

How about randomly initializing?

 $W = 0.001 * np.random.random(d_l, d_{l-1})$

Figure credits: Dr Justin Johnson, U Michigan

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 5

भारतीय प्रौद्योगिकी संस्थान डैदराबाद Indian Institute of Technology Huderabad

- How about randomly initializing?
	- $W = 0.001 * np.random.random(d_l, d_{l-1})$
- Okay for the shallow nets

Figure credits: Dr Justin Johnson, U Michigan

- How about randomly initializing?
	- $W = 0.001 * np.random.random(d_l, d_{l-1})$
- Okay for the shallow nets
- However, the dynamic range of the activations at later layers goes on shrinking \rightarrow activations tend to zero at deeper layers (e.g. 6 layer MLP with a tanh nonlinearity)

Figure credits: Dr Justin Johnson, U Michigan

- How about randomly initializing?
	- $W = 0.001 * np.random.random(d_l, d_{l-1})$
- Okay for the shallow nets
- However, the dynamic range of the activations at later layers goes on shrinking \rightarrow activations tend to zero at deeper layers (e.g. 6 layer MLP with a tanh nonlinearity)

All zero gradients, no learning!

Figure credits: Dr Justin Johnson, U Michigan

$W = np.random.random(d_l, d_{l-1})/np.sqrt(d_{l-1})$

Figure credits: Dr Justin Johnson, U Michigan

Dr. Konda Reddy Mopuri **6** and \overline{a} dl - 10/ DNN Training - 1

$W = np.random.random(d_l, d_{l-1})/np.sqrt(d_{l-1})$

Figure credits: Dr Justin Johnson, U Michigan

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 6

 \bullet We prefer the o/p to have similar variance as the input

- \bullet We prefer the o/p to have similar variance as the input
- Consider a single layer, $y = Wx$, i.e. $y_i = \sum_{j=1}^{d_{l-1}} x_j \cdot w_j$

- \bullet We prefer the o/p to have similar variance as the input
- Consider a single layer, $y = Wx$, i.e. $y_i = \sum_{j=1}^{d_{l-1}} x_j \cdot w_j$ \bullet
- $\mathsf{var}(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d)

- \bullet We prefer the o/p to have similar variance as the input
- Consider a single layer, $y = Wx$, i.e. $y_i = \sum_{j=1}^{d_{l-1}} x_j \cdot w_j$ $\mathsf{var}(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d) $\mathsf{var}(y_i) = d_{l-1} \cdot \left(E({x_i}^2) \cdot E({w_i}^2) - E({x_i})^2 \cdot E({w_i})^2 \right)$ (Assuming x and *w* are independent)

- \bullet We prefer the o/p to have similar variance as the input
- Consider a single layer, $y = Wx$, i.e. $y_i = \sum_{j=1}^{d_{l-1}} x_j \cdot w_j$ $\mathsf{var}(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d) $\mathsf{var}(y_i) = d_{l-1} \cdot \left(E({x_i}^2) \cdot E({w_i}^2) - E({x_i})^2 \cdot E({w_i})^2 \right)$ (Assuming x and *w* are independent)
- \bullet var $(y_i) = d_{i-1} \cdot \text{var}(x_i) \cdot \text{var}(w_i)$ Assuming $(x_i$ and w_i are zero-mean)

- \bullet We prefer the o/p to have similar variance as the input
- Consider a single layer, $y = Wx$, i.e. $y_i = \sum_{j=1}^{d_{l-1}} x_j \cdot w_j$ $\mathsf{var}(y_i) = d_{l-1} \cdot var(x_i \cdot w_i)$ (Assuming w_i and x_i are i.i.d) $\mathsf{var}(y_i) = d_{l-1} \cdot \left(E({x_i}^2) \cdot E({w_i}^2) - E({x_i})^2 \cdot E({w_i})^2 \right)$ (Assuming x and *w* are independent)
- \bullet var $(y_i) = d_{i-1} \cdot \text{var}(x_i) \cdot \text{var}(w_i)$ Assuming $(x_i$ and w_i are zero-mean) \rightarrow var $(w_i) = \frac{1}{d_{l-1}}$

2b. Weight Initialization with ReLU activations भारतीय प्रौद्योगिकी संस्थान डैदराबाद

Kaiming He or MSRA initialization

Figure credits: Dr Justin Johnson

Dr. Konda Reddy Mopuri **and Containing - 1** and Containing - 1 and 2 8 and 2 8

Indian Institute of Technology Hyderabad

2b. Weight Initialization with ReLU activations

Kaiming He or MSRA initialization

std=sqrt $(2/d_{l-1})$ \bullet

Figure credits: Dr Justin Johnson

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 8

भारतीय प्रौद्योगिकी संस्थान डेयराबाद Indian Institute of Technology Hyderabad

2c. Weight Initialization: Residual Networks भारतीय प्रौद्योगिकी संस्थान डैदराबाद Indian Institute of Technology Hyderabad

MSRA initialization: $Var(F(x)+x) > Var(x)$

Figure credits: Dr. Justin Johnson

Dr. Konda Reddy Mopuri **and Containing - 1** and Containing - 1 and 2 9 and 2 9

2c. Weight Initialization: Residual Networks भारतीय प्रौद्योगिकी संस्थान डैदराबाद Indian Institute of Technology Hyderabad

- MSRA initialization: $Var(F(x)+x) > Var(x)$
- Variance grows!

Figure credits: Dr. Justin Johnson

Dr. Konda Reddy Mopuri **12. September 10. And America** dl - 10/ DNN Training - 1 9

2c. Weight Initialization: Residual Networks भारतीय प्रौद्योगिकी संस्थान डैदराबार Indian Institute of Technology Huderabad

- MSRA initialization: $Var(F(x)+x) > Var(x)$
- Variance grows!
- Solution: Initialize the first Conv layer with MSRA, and the second one with zero \rightarrow $Var(x+F(x)) = Var(x)$

Figure credits: Dr. Justin Johnson

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 9

¹ Most of the regularization techniques trade increased bias for decreased variance

- ¹ Most of the regularization techniques trade increased bias for decreased variance
- 2 It has to be profitable!

¹ Most often the best-fitting model is a large model that has been appropriately regularized

- Parameter Norm penalties (*l*2*, l*1, etc.)
- Dataset Augmentation \bullet
- Noise Robustness
- Semi-Supervised Learning
- Multi-Task Learning (Parameter sharing) \bullet
- Sparse Representation
- Dropout
- etc.

3a. Parameter Norm Penalties

¹ For neural networks, typically only the weights of the affine transformations are regularized leaving the biases unregularized

3a. Parameter Norm Penalties

- ¹ For neural networks, typically only the weights of the affine transformations are regularized leaving the biases unregularized
- ² Bias controls only a single variable as opposed to weight which connects two

3a. Parameter Norm Penalties

- ¹ For neural networks, typically only the weights of the affine transformations are regularized leaving the biases unregularized
- ² Bias controls only a single variable as opposed to weight which connects two
- ³ Regularizing biases may induce underfitting
3a. Parameter Norm Penalties

1 L_2 parameter regularization: $\tilde{\mathcal{J}} = \frac{\alpha}{2} w^T w + \mathcal{J}(w; X, y)$

3a. Parameter Norm Penalties

- **1** L_2 parameter regularization: $\tilde{\mathcal{J}} = \frac{\alpha}{2} w^T w + \mathcal{J}(w; X, y)$
- 2 *L*₁ regularization: $\tilde{\mathcal{J}} = \alpha |w|_1 + \mathcal{J}(w; X, y)$

3a. Parameter Norm Penalties

- **1** L_2 parameter regularization: $\tilde{\mathcal{J}} = \frac{\alpha}{2} w^T w + \mathcal{J}(w; X, y)$
- 2 *L*₁ regularization: $\tilde{\mathcal{J}} = \alpha |w|_1 + \mathcal{J}(w; X, y)$
- ³ Norm penalties induce different desired behaviors based on the exact penalty imposed

¹ Bestway to make ML model generalize better is to train with more data

- ¹ Bestway to make ML model generalize better is to train with more data
- ² In practice training data is limited

- ¹ Bestway to make ML model generalize better is to train with more data
- ² In practice training data is limited
- ³ Create fake data and add it to the training data, called Dataset augmentation

1 Easier for classification

- **1** Easier for classification
- ² Difficult for density estimation task (unless we have solved the estimation problem)

¹ Has been particularly effective for specific classification problems such as object recognition

- ¹ Has been particularly effective for specific classification problems such as object recognition
- ² Operations such as translation by few pixels, rotating slightly, adding mild noise, etc. greatly improve generalization

- ¹ Has been particularly effective for specific classification problems such as object recognition
- ² Operations such as translation by few pixels, rotating slightly, adding mild noise, etc. greatly improve generalization
- ³ Hand-designed augmentations in some domains can result in dramatic improvements

- ¹ Has been particularly effective for specific classification problems such as object recognition
- ² Operations such as translation by few pixels, rotating slightly, adding mild noise, etc. greatly improve generalization
- ³ Hand-designed augmentations in some domains can result in dramatic improvements
- ⁴ Should restrict to label preserving transformations

3c. Multi-Task Learning

¹ Improves generalization by collecting samples arising out of multiple taks

3c. Multi-Task Learning

- ¹ Improves generalization by collecting samples arising out of multiple taks
- ² Similar to additional data samples, multi-task samples also put more pressure on the parameters of the shared layers to be 'better'

3c. Multi-Task Learning

- **1** Improves generalization by collecting samples arising out of multiplex taks
- ² Similar to additional data samples, multi-task samples also put more pressure on the parameters of the shared layers to be better

¹ Key ideas and contributions in DL have been to engineer architectures for making them easier to train

- ¹ Key ideas and contributions in DL have been to engineer architectures for making them easier to train
- ² Dropout is one such ('deep') regularization technique (Srivastava et al. 2014)

1 During the forward pass, some of the units are randomly 'zeroed' out (neurons are removed)

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Figure from Srivastava et al. 2014

- 1 During the forward pass, some of the units are randomly 'zeroed' out (neurons are removed)
- ² Dropped units are randomly selected in each layer independent of others

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Figure from Srivastava et al. 2014

- 1 During the forward pass, some of the units are randomly 'zeroed' out (neurons are removed)
- ² Dropped units are randomly selected in each layer independent of others
- ³ Resulting network has a different architecture

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Figure from Srivastava et al. 2014

- 1 During the forward pass, some of the units are randomly 'zeroed' out (neurons are removed)
- ² Dropped units are randomly selected in each layer independent of others
- ³ Resulting network has a different architecture
- ⁴ Backpropagation happens through the remaining activations

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Figure from Srivastava et al. 2014

3d. Dropout: Interpretation

¹ Improves independence between the units (prevents co-adaptation of the units in the network)

3d. Dropout: Interpretation

- ¹ Improves independence between the units (prevents co-adaptation of the units in the network)
- ² Distributes the representation among all the units (forces the network to learn redundancy)

¹ We will decide on which units/layers to use dropout, and with what probability p units are dropped.

- ¹ We will decide on which units/layers to use dropout, and with what probability p units are dropped.
- ² For each sample, as many Bernoulli variables as units are sampled independently for dropping the units.

3d. Dropout: Another Interpretation

¹ Results in a large ensemble of networks (with shared parameters)

3d. Dropout: Another Interpretation

- ¹ Results in a large ensemble of networks (with shared parameters)
- ² Every possible binary mask results in a member of the ensemble

3d. Dropout: Another Interpretation

- ¹ Results in a large ensemble of networks (with shared parameters)
- ² Every possible binary mask results in a member of the ensemble
- $\,$ $\,$ $\,$ E.g. a dense layer with 10 units has 2^{10} masks!

¹ Which model from the ensemble to use? $y = f(x, w, m)$ (*m* is the chosen binary mask)

- ¹ Which model from the ensemble to use? $y = f(x, w, m)$ (*m* is the chosen binary mask)
- 2 How about taking the opinion of all the experts? \rightarrow 'average out' and make the o/p deterministic

- ¹ Which model from the ensemble to use? $y = f(x, w, m)$ (*m* is the chosen binary mask)
- 2 How about taking the opinion of all the experts? \rightarrow 'average out' and make the o/p deterministic

$$
\mathfrak{D} \ y = \mathbb{E}_m[f(x, w, m)] = \sum_m p(m) \cdot f(x, w, m)
$$

- ¹ Which model from the ensemble to use? $y = f(x, w, m)$ (*m* is the chosen binary mask)
- 2 How about taking the opinion of all the experts? \rightarrow 'average out' and make the o/p deterministic
- 3 $y = \mathbb{E}_m[f(x, w, m)] = \sum_m p(m) \cdot f(x, w, m)$
- ⁴ Leads to dropping no unit but multiply the activations with the probability of retaining

- ¹ Which model from the ensemble to use? $y = f(x, w, m)$ (*m* is the chosen binary mask)
- 2 How about taking the opinion of all the experts? \rightarrow 'average out' and make the o/p deterministic

$$
\mathbf{I} \quad y = \mathbb{E}_m[f(x, w, m)] = \sum_m p(m) \cdot f(x, w, m)
$$

- ⁴ Leads to dropping no unit but multiply the activations with the probability of retaining
- ⁵ The standard variant uses the 'inverted dropout'. Multiplies activations by $\frac{1}{(1-p)}$ during train and keeps the network untouched during test.

¹ Which layers to regularize with the Dropout?

- ¹ Which layers to regularize with the Dropout?
- 2 More parameters are the dense layers \rightarrow usually applied there

- ¹ Which layers to regularize with the Dropout?
- 2 More parameters are the dense layers \rightarrow usually applied there
- ³ Not much used after ResNets!

1 Gradient Descent converges faster with feature scaling $(x \leftarrow \frac{x-\mu}{\sigma})$

- **1** Gradient Descent converges faster with feature scaling $(x \leftarrow \frac{x-\mu}{\sigma})$
- ² Batch Normalization (BN) is a normalization method for intermediate layers of NNs \rightarrow performs whitening to the intermediate layer activations

Input: Values of x over a mini-batch: $B = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma, \beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ $\frac{1}{2}$ mini-batch mean $\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ $\frac{1}{2}$ normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

γ and *β* are learn-able parameters

¹ Originally introduced to handle the internal covariate shift (ICS)

- ¹ Originally introduced to handle the internal covariate shift (ICS)
- ² BN makes the activation of each neuron to be Gaussian distributed

- ¹ Originally introduced to handle the internal covariate shift (ICS)
- ² BN makes the activation of each neuron to be Gaussian distributed
- ICS is undesirable because the layers need to adapt to the new distribution of activations
- ⁴ With BN, it is reduced to new pair of parameters, but the distribution remains Gaussian

¹ Mitigates interdependency between hidden layers during training

$$
\text{Input} \quad \cdots \hspace{-1.2mm} \rightarrow \hspace{-1.2mm} \begin{array}{ccc} \text{(a)} & \longrightarrow & \text{(b)} \rightarrow & \text{(c)} \rightarrow & \text{(d)} \rightarrow & \text{(e)} \cdots \hspace{-1.2mm} \end{array} \hspace{-1.2mm} \text{Output}
$$

¹ Mitigates interdependency between hidden layers during training

\n
$$
\text{Input} \quad \longrightarrow \quad \text{(a)} \quad \longrightarrow \quad \text{(b)} \quad \longrightarrow \quad \text{(c)} \quad \longrightarrow \quad \text{(d)} \quad \longrightarrow \quad \text{(e)} \quad \longrightarrow \quad \text{Output}
$$
\n

\n\n 2) \n $\partial(a) = \partial(b) \cdot \partial(c) \cdot \partial(d) \cdot \partial(e)$ \n

1

¹ Mitigates interdependency between hidden layers during training

2
$$
\partial(a) = \partial(b) \cdot \partial(c) \cdot \partial(d) \cdot \partial(e)
$$

³ if we want to adjust the input distribution of a specific hidden unit, we need to consider the whole sequence of layers $(w/o$ BN)

¹ Mitigates interdependency between hidden layers during training

$$
\mathsf{Input} \quad \longrightarrow \bigcirc \bullet \bigcirc \rightarrow \bigcirc \bigcirc \rightarrow \bigcirc \bigcirc \rightarrow \bigcirc \bigcirc \rightarrow \bigcirc \bigcirc \longrightarrow \bigcirc \bigcirc \longrightarrow \bigcirc \mathsf{Output}
$$

$$
\mathfrak{D} \ \partial(a) = \partial(b) \cdot \partial(c) \cdot \partial(d) \cdot \partial(e)
$$

- ³ if we want to adjust the input distribution of a specific hidden unit, we need to consider the whole sequence of layers $(w/o$ BN)
- ⁴ BN acts like a valve which holds back the flow, and allows its regulation using *β* and *γ*

 $\overline{}$

¹ Reduces training time (less ICS)

- ¹ Reduces training time (less ICS)
- ² Reduces the demand for additional regularizers (Batch statistics)

- **1** Reduces training time (less ICS)
- ² Reduces the demand for additional regularizers (Batch statistics)
- ³ Allows higher learning rates (less danger of vanishing/exploding gradients)

Regularization: General idea

¹ Add some randomness during the training

Regularization: General idea

- ¹ Add some randomness during the training
- ² Have a mechanism for marginalizing while testing

Regularization: General idea

- ¹ Add some randomness during the training
- ² Have a mechanism for marginalizing while testing
- ³ Some of the instances Dropout Batch Normalization Data Augmentation Drop Connect (drop weights instead) Fractioinal MaxPooling Stochastic Depth Mixup Cutout CutMix, etc.