Deep Learning

10 DNN Training - 1

Dr. Konda Reddy Mopuri
Dept. of Al, IIT Hyderabad

Jan-May 2023

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1


https://krmopuri.github.io/

1. Data pre-processing

o Mean subtraction (e.g. AlexNet: 32 x 32 x 3, VGG: 1 x 1 x 3)
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1. Data pre-processing

o Mean subtraction (e.g. AlexNet: 32 x 32 x 3, VGG: 1 x 1 x 3)

o Mean subtraction and division by standard deviation per channel (e.g.
ResNet)

o PCA or whitening are not common
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@
2. Weight Initialization i

o What if all the parameters are
initialized to zero?

i/p layer hidden layer o/p layer
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2. Weight Initialization

©

What if all the parameters are
initialized to zero?

o Or, a different constant?

o Leads to a failure mode (often
known as the ‘symmetry’
problem)

o Hence, we need different

, values as weights!
i/p layer hidden layer o/p layer
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2. Weight Initialization

i/p layer hidden layer o/p layer
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2. Weight Initialization i

o Is it good enough to have
different parameters?

o Large weights — exploding
gradients
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2. Weight Initialization

o Is it good enough to have
different parameters?

o Large weights — exploding
gradients

o Small ones — vanishing
gradients

i/p layer hidden layer o/p layer
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2. Weight Initialization

o Is it good enough to have
different parameters?

o Large weights — exploding
gradients

o Small ones — vanishing
gradients

o Different weights — different
o/p range of the neurons

i/p layer hidden layer o/p layer
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2. Weight Initialization

o How about randomly initializing?
W = 0.001 * np.random.randn(d;,d;_1)

Figure credits: Dr Justin Johnson, U Michigan
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2. Weight Initialization

o How about randomly initializing?
W = 0.001 * np.random.randn(d;,d;_1)

o Okay for the shallow nets

o However, the dynamic range of the activations at later layers goes on
shrinking — activations tend to zero at deeper layers (e.g. 6 layer
MLP with a tanh nonlinearity)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05
-1 o 1 =4 o 1 -4 o 1 =3 o 1 -2 o 1 -1 0 1

Figure credits: Dr Justin Johnson, U Michigan
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2. Weight Initialization

o How about randomly initializing?
W = 0.001 * np.random.randn(d;,d;_1)

o Okay for the shallow nets

o However, the dynamic range of the activations at later layers goes on
shrinking — activations tend to zero at deeper layers (e.g. 6 layer
MLP with a tanh nonlinearity)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05
-1 o 1 =4 o 1 -4 o 1 =3 o 1 -3 o 1 -1 0 1

o All zero gradients, no learning!

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization

o W = np.random.randn(d;,d;_1)/np.sqrt(d;_1)

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization

o W = np.random.randn(d;,d;_1)/np.sqrt(d;_1)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00
std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

A A A

Figure credits: Dr Justin Johnson, U Michigan
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2a. Xavier Initialization

o We prefer the o/p to have similar variance as the input
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2a. Xavier Initialization

o We prefer the o/p to have similar variance as the input

. . . di—
o Consider a single layer, y = Wx, ie. y; = Ejl:f Tj - wj

o var(y;) = di—1 - var(x; - w;) (Assuming w; and z; are i.i.d)
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2a. Xavier Initialization

©

We prefer the o/p to have similar variance as the input

©

. . . i
Consider a single layer, y = Wx, i.e. y; = Zjl:f xj - wj

©

var(y;) = dj—1 - var(x; - w;) (Assuming w; and x; are i.i.d)

var(y;) = dj—1 - <E(SU12) - B(w;?) — E(x;)?- E(wi)Q) (Assuming x

and w are independent)

©
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2a. Xavier Initialization

©

We prefer the o/p to have similar variance as the input

©

. . . i
Consider a single layer, y = Wx, i.e. y; = Zjl:f xj - wj

©

var(y;) = dj—1 - var(x; - w;) (Assuming w; and x; are i.i.d)

var(y;) = dj—1 - <E(SU12) - B(w;?) — E(x;)?- E(wi)Q) (Assuming x

and w are independent)

©

©

var(y;) = dj—1- var(x;)- var(w;) Assuming (z; and w; are zero-mean)
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2a. Xavier Initialization

©

We prefer the o/p to have similar variance as the input

©

. . . i
Consider a single layer, y = Wx, i.e. y; = Zjl:f xj - wj

©

var(y;) = dj—1 - var(x; - w;) (Assuming w; and x; are i.i.d)

var(y;) = dj—1 - <E(SU12) - B(w;?) — E(x;)?- E(wi)Q) (Assuming x

and w are independent)

©

©

var(y;) = dj—1- var(x;)- var(w;) Assuming (z; and w; are zero-mean)

o — var(w;) = gz
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@
2b. Weight Initialization with ReLU activatigifis

o Kaiming He or MSRA initialization

Figure credits: Dr Justin Johnson
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@
2b. Weight Initialization with ReLU activatigifis

o Kaiming He or MSRA initialization
o std=sqrt(2/d;_1)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81
-1 0 1 -1 o 1 -1 0 1 -1 o 1 -1 o 1 -3 o 1

Figure credits: Dr Justin Johnson
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@
2c. Weight Initialization: Residual Networks|jj

o MSRA initialization:

Hi T Var(F(x)+x) > Var(x)
|
= T Kot
i
S X
gRlaingblock Residual Block

Figure credits: Dr. Justin Johnson
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@
2c. Weight Initialization: Residual Networks|jj

o MSRA initialization:
e Var(F(x)+x) > Var(x)

: o Variance grows!
\‘ relu F(x) I relu Additive
. “shortcut”

H(x)

f
X X
“Plain” block Residual Block

Figure credits: Dr. Justin Johnson
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@
2c. Weight Initialization: Residual Networks|jj

o MSRA initialization:
Trelu Var(F(x)+x) > Var(x)

H(’x) F(x) +x
‘- o Variance grows!
T eel F(x) I relu Additive . . .
e shortcut o Solution: Initialize the first
, ¢ Conv layer with MSRA, and
jRlaloRblock Residual Block the second one with zero —

Var(x+F(x)) = Var(x)

Figure credits: Dr. Justin Johnson
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3. Deep Regularization

@ Most of the regularization techniques trade increased bias for
decreased variance
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3. Deep Regularization

@ Most of the regularization techniques trade increased bias for
decreased variance

@ It has to be profitable!
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@
3. Deep Regularization Il

e e e

@ Most often the best-fitting model is a large model that has been
appropriately regularized
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3. Deep Regularization

©

Parameter Norm penalties (I2, 11, etc.)

©

Dataset Augmentation

Noise Robustness

©

©

Semi-Supervised Learning

©

Multi-Task Learning (Parameter sharing)

©

Sparse Representation

©

Dropout

o etc.
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3a. Parameter Norm Penalties

@ For neural networks, typically only the weights of the affine
transformations are regularized leaving the biases unregularized
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3a. Parameter Norm Penalties

@ For neural networks, typically only the weights of the affine
transformations are regularized leaving the biases unregularized

@ Bias controls only a single variable as opposed to weight which
connects two

13
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3a. Parameter Norm Penalties

@ For neural networks, typically only the weights of the affine
transformations are regularized leaving the biases unregularized

@ Bias controls only a single variable as opposed to weight which
connects two
@ Regularizing biases may induce underfitting

13
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3a. Parameter Norm Penalties

@ L, parameter regularization: J = %wTw + J(w; X, y)
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3a. Parameter Norm Penalties

@ L, parameter regularization: J = %wTw + J(w; X, y)
@ L, regularization: J = a|w|; + J(w; X, y)
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3a. Parameter Norm Penalties

@ Lo parameter regularization: J = %wTw + J(w; X, y)
@ L, regularization: J = a|w|; + J(w; X, y)

@ Norm penalties induce different desired behaviors based on the exact
penalty imposed
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3b. Dataset Augmentation

@ Bestway to make ML model generalize better is to train with more
data
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3b. Dataset Augmentation

@ Bestway to make ML model generalize better is to train with more
data

@ In practice training data is limited

@ Create fake data and add it to the training data, called Dataset
augmentation
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3b. Dataset Augmentation \I.l\

@ Easier for classification
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3b. Dataset Augmentation

@ Easier for classification

@ Difficult for density estimation task (unless we have solved the
estimation problem)
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3b. Dataset Augmentation

@ Has been particularly effective for specific classification problems such
as object recognition
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3b. Dataset Augmentation

@ Has been particularly effective for specific classification problems such
as object recognition

@ Operations such as translation by few pixels, rotating slightly, adding
mild noise, etc. greatly improve generalization

® Hand-designed augmentations in some domains can result in dramatic
improvements
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3b. Dataset Augmentation

@ Has been particularly effective for specific classification problems such
as object recognition

@ Operations such as translation by few pixels, rotating slightly, adding
mild noise, etc. greatly improve generalization

® Hand-designed augmentations in some domains can result in dramatic
improvements

@ Should restrict to label preserving transformations
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3c. Multi-Task Learning

@ Improves generalization by collecting samples arising out of multiple
taks
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3c. Multi-Task Learning

@ Improves generalization by collecting samples arising out of multiple
taks

@ Similar to additional data samples, multi-task samples also put more
pressure on the parameters of the shared layers to be ‘better’
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@
3c. Multi-Task Learning Il

@ Improves generalization by collecting samples arising out of multipe=z.

taks
@ Similar to additional data samples, multi-task samples also put more

pressure on the parameters of the shared layers to be better

D O4O,
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3d. Dropout HI.I
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@ Key ideas and contributions in DL have been to engineer architectures
for making them easier to train
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3d. Dropout

@ Key ideas and contributions in DL have been to engineer architectures
for making them easier to train

@ Dropout is one such (‘deep’) regularization technique (Srivastava et
al. 2014)
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3d. Dropout HI.IH

@ During the forward pass, some of the units are randomly ‘zeroed™out~-
(neurons are removed)

a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014
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3d. Dropout \I.l\

@ During the forward pass, some of the units are randomly ‘zeroed™out~-
(neurons are removed)

@ Dropped units are randomly selected in each layer independent of
others

e

a) Standard Neural Net (b) After applying

ropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014
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3d. Dropout \I.l\

@ During the forward pass, some of the units are randomly ‘zeroed™out~-
(neurons are removed)

@ Dropped units are randomly selected in each layer independent of
others

@ Resulting network has a different architecture

s
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Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 21



3d. Dropout I.l

@ During the forward pass, some of the units are randomly ‘zeroed™out~-
(neurons are removed)

@ Dropped units are randomly selected in each layer independent of
others

@ Resulting network has a different architecture

@ Backpropagation happens through the remaining activations

A
X

M

W
N

Gl

7
o
X%

=

(a) Standard Neural Net (b) After applying

e

ropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Figure from Srivastava et al. 2014
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3d. Dropout: Interpretation

@ Improves independence between the units (prevents co-adaptation of
the units in the network)
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3d. Dropout: Interpretation

@ Improves independence between the units (prevents co-adaptation of
the units in the network)

@ Distributes the representation among all the units (forces the network
to learn redundancy)
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3d. Dropout \I.l\

@ We will decide on which units/layers to use dropout, and with what
probability p units are dropped.
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3d. Dropout

@ We will decide on which units/layers to use dropout, and with what
probability p units are dropped.

@ For each sample, as many Bernoulli variables as units are sampled
independently for dropping the units.
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3d. Dropout: Another Interpretation

@ Results in a large ensemble of networks (with shared parameters)
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3d. Dropout: Another Interpretation

@ Results in a large ensemble of networks (with shared parameters)
@ Every possible binary mask results in a member of the ensemble
@ E.g. a dense layer with 10 units has 2! masks!
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3d. Dropout: test time

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)
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3d. Dropout: test time

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)

@ How about taking the opinion of all the experts? — ‘average out’ and
make the o/p deterministic
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3d. Dropout: test time

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)

@ How about taking the opinion of all the experts? — ‘average out’ and
make the o/p deterministic

@ y= Em[f(:c,w,m)] = Emp(m) : f(wivm)
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3d. Dropout: test time

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)

@ How about taking the opinion of all the experts? — ‘average out’ and
make the o/p deterministic

@ Leads to dropping no unit but multiply the activations with the
probability of retaining
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3d. Dropout: test time

@ Which model from the ensemble to use?
y = f(z,w,m) (m is the chosen binary mask)

@ How about taking the opinion of all the experts? — ‘average out’ and
make the o/p deterministic

@ Leads to dropping no unit but multiply the activations with the
probability of retaining

® The standard variant uses the ‘inverted dropout’. Multiplies
activations by ﬁ during train and keeps the network untouched

during test.
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3d. Dropout ||.l|

@ Which layers to regularize with the Dropout?
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3d. Dropout

@ Which layers to regularize with the Dropout?

@ More parameters are the dense layers — usually applied there
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3d. Dropout

@ Which layers to regularize with the Dropout?
@ More parameters are the dense layers — usually applied there
@ Not much used after ResNets!
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3e. Batch Normalization (BN)

@ Gradient Descent converges faster with feature scaling (z < *=£)
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3e. Batch Normalization (BN)

@ Gradient Descent converges faster with feature scaling (z < *=£)

@ Batch Normalization (BN) is a normalization method for intermediate
layers of NNs — performs whitening to the intermediate layer
activations

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 27



3e. Batch Normalization (BN)

Input: Values of z over a mini-batch: B = {z1. m }:
Parameters to be learned: 7, 3
Output: {y; = BN, g(z;)}

m

1
Be—— > x
2253 = ‘E; i

// mini-batch mean

. Lo ‘ N A
o — = Z(‘” —us)? // mini-batch variance
i=1

B e S HB // normalize
Vogte
Yi < 7Zi + B = BN, 5(2:)

// scale and shift

~ and (3 are learn-able parameters
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3e. Batch Normalization (BN)

@ Originally introduced to handle the internal covariate shift (ICS)
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3e. Batch Normalization (BN)

@ Originally introduced to handle the internal covariate shift (ICS)

@ BN makes the activation of each neuron to be Gaussian distributed

Dr. Konda Reddy Mopuri dl - 10/ DNN Training - 1 29



3e. Batch Normalization (BN)

@ Originally introduced to handle the internal covariate shift (ICS)
@ BN makes the activation of each neuron to be Gaussian distributed

@ ICS is undesirable because the layers need to adapt to the new
distribution of activations

@ With BN, it is reduced to new pair of parameters, but the distribution
remains Gaussian
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3e. Batch Normalization (BN)

@ Mitigates interdependency between hidden layers during training

Input g ( \ — I\ b — '\ c) — I(E) — e\,l RS Qutput
o

=
it
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3e. Batch Normalization (BN)

@ Mitigates interdependency between hidden layers during training

coo» Output

Input ) (a) — I(\E) — '\ c) — I(E)

@ 9(a) = () - (c) - A(d) - (e)

\__/

S e
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3e. Batch Normalization (BN)

@ Mitigates interdependency between hidden layers during training

R N ™ =
Input e (j) — (,E ) —= (i) —_ I(d\, — | e\; e Output

A Yo
@ J(a) =0(b)-0(c)-0(d) - d(e)
@ if we want to adjust the input distribution of a specific hidden unit,
we need to consider the whole sequence of layers (w/o BN)
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3e. Batch Normalization (BN)

@ Mitigates interdependency between hidden layers during training

R N N . T
Input RS (a\ — l\/ b ) — | c) — | d\, — | e\J s Output
N N R N W

@ 9J(a) =0(b)-9(c)-0(d) - O(e)
@ if we want to adjust the input distribution of a specific hidden unit,
we need to consider the whole sequence of layers (w/o BN)

@ BN acts like a valve which holds back the flow, and allows its
regulation using 8 and ~y
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3e. Batch Normalization (BN)

@ Reduces training time (less ICS)
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3e. Batch Normalization (BN)

@ Reduces training time (less ICS)

@ Reduces the demand for additional regularizers (Batch statistics)
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3e. Batch Normalization (BN)

@ Reduces training time (less ICS)
@ Reduces the demand for additional regularizers (Batch statistics)

@ Allows higher learning rates (less danger of vanishing/exploding
gradients)
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Regularization: General idea

@ Add some randomness during the training
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@ Add some randomness during the training

@ Have a mechanism for marginalizing while testing
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Regularization: General idea

@ Add some randomness during the training
@ Have a mechanism for marginalizing while testing

@ Some of the instances
Dropout
Batch Normalization
Data Augmentation
Drop Connect (drop weights instead)
Fractioinal MaxPooling
Stochastic Depth
Mixup
Cutout
CutMix, etc.
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